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Thermodynamic and relativistic aspects of thermal inertia in fluids
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We present a generalized relativistic Lagrangian which yields the effect of heat fluxq and nonequilibrium
stresst in the energy-momentum tensor of an extended reversible fluid exhibiting thermal inertia. The actual
momentum of heat~thermal momentum related to the entropy flow! follows to be many orders of magnitude
larger thanq/c2 ~c is the light speed! but it is consistent with Grad’s kinetic theory@in Principles of the Theory
of Gases, edited by S. Flugge, Handbu¨ch der Physik Vol. 12~Springer, Berlin, 1958!# and with experiments in
heat conduction. On the other hand, the net momentum of heat remainsq/c2, in agreement with the standard
relativistic result, this net momentum being the result of incomplete compensation of the actual thermal
momentum and the momentum associated with self-diffusion of particles. The classical densities of mass and
entropy,r andrs , cease to be natural variables of energy densityE in the sense of Callen@Thermodynamics
and an Introduction to Thermostatistics~Wiley, New York, 1988!# whenever inertial effects prevail. This fact
necessitates the use of what may be called the thermal potentialT2, a new quantity replacing the classical
temperatureT. Changes in thermodynamic formalism are related to the replacement ofT by T2. The admission
of a freely varied four-flux of entropy in an extended Hamilton principle implies all nonequilibrium corrections
~q and t! to the energy-momentum tensor, making it possible to investigate the effect of nonequilibrium
phenomena on the properties of associated gravitational fields.@S1063-651X~98!01912-6#

PACS number~s!: 05.70.Ln, 47.27.Te, 44.10.1i
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I. INTRODUCTION: AIMS AND SCOPE

Thermal inertia is a gradual change of the heat flux un
a rapid change of the temperature gradient. It manifests it
in both nonrelativistic and relativistic cases. The purpose
this work is to develop a relativistic theory of thermal iner
based on an appropriate LagrangianL which needs to be
determined. To begin with we consider the simplest poss
extension of the standard relativistic Lagrangian of the ad
batic fluid, which is the negative rest energy densityE0. This
L is made applicable to nonadiabatic fluids by distinguish
between the absolute velocity of the transferred entropyus

5Js /rs ~where rs is the entropy density andJs the total
entropy flux! and the hydrodynamic velocityu5J/r ~where
J is the mass flux andr is the total fluid density!. Allowing
for an unconstrained entropy flow, with the diffusive comp
nentj s , in the corresponding Hamilton principle ourL yields
the energy-momentum tensor which contains the heat
q5Tj s , associated with the momentum densityq/c2, and
the nonequilibrium stresst5qq/(Trsc

2). The obtained
theory is what we call a ‘‘quasiclassical extension’’ of th
theory of relativistic adiabatic fluid. The resulting and r
sidual nature of the momentum densityq/c2 ~disappearing in
the frame of the relativistic energy and at the limitc→`! is
a distinctive feature of the transfer process considered.
energy results are valid, however, such a theory can pre
thermal inertia solely as a relativistic effect~Secs. II–IV!.

In Secs. V–VII, reference is made to the problem of th
mal inertia, implied by kinetic theories of Grad’s type whic
predict momentum densities of heat to be of many order
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magnitude larger thanq/c2; they are of the orderq/c0
2,

wherec0 is close to the thermal speedkBT/m for the particle
of massm. In view of unpredictability of these large mo
menta and related nonequilibrium corrections to the inter
energy by the~described above! quasiclassical extension o
the ~relativistic! adiabatic fluid theory, it is shown that
hypothesis of a ‘‘thermal mass,’’ associating a part of t
observed rest mass with the entropy rather than with p
ticles, furnishes a simple ‘‘nonclassical extension’’ capa
of predicting these large momenta and the related ene
terms. The principal property of this extension is that it p
serves finite thermal inertia in nonrelativistic limit. We pu
sue here the simplest model with the constant amoun
thermal mass per unit entropy~the coefficientu adjusted so
that it fits Grad’s kinetic data in their broad plateau regim
whereu.m/3kB! that allows us to handle the kinetic effec
with reasonable accuracy. The inclusion ofu does not
change the chemical potentialm, but requires a redefinition
of the usual statistical temperature according to the sim
formula T25T1um. Yet, this inclusion adds to the mod
fied temperature the relativistic componentuc2, analogous to
the c2 component of the relativistic chemical potentialm* .
The relativistic intensitiesT* 5T21uc2 and m* 5m1c2

obey the Planck-Einstein equations for the relativistic tra
formation ofT @1#.

The nonclassical extension shows that the actual mom
tum density ~the thermal momentum density!, associated
with the entropy fluxj s , equals, in fact,T2j s(1/c211/c0

2),
where T2 is the redefined statistical temperature andc0
5(T2/u)1/2. For the unchanged definition of heat,q5Tj s ,
the net momentum of heat remainsq/c2, in agreement with
the well-established result, the net momentum being the
sult of compensation of the thermal momentum and the m
mentum associated with the self-diffusion of bare particl
7027 © 1998 The American Physical Society
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7028 PRE 58STANISLAW SIENIUTYCZ
The partial momenta, thermal and material, are then in
preted as internal momenta of extended thermodynam
The analysis explains terms likeq/c0

2 in some formulas for
internal momenta and their squares in the internal ene
function. On the other hand, the analysis shows that th
thermal momenta are still compatible with the standard
energy, momentum density, enthalpy, and pressure; yet
provement is achieved for the components of the ene
momentum tensor. Using the extended model in the con
of Ray’s @2# variational principle, a nonequilibrium energy
momentum tensor is obtained in general relativity. This t
sor takes into account heat and nonequilibrium stress
allows one to investigate their influence on properties of
sulting gravitational fields. Our results are consistent with
recent findings obtained in the so-called generic formal
for nonequilibrium dynamics@3#.

II. STANDARD DESCRIPTION
OF RELATIVISTIC FLUIDS

The basic ingredients of the standard relativistic theory
a one-component fluid are the symmetric energy-momen
tensorGik, the particle four-fluxJi , and the entropy fluxSi

( i ,k51, . . .,4). Thecentral problem of thermodynamics
how to interrelate these primary variables. The quantitiesGik

andJi are conserved, i.e.,

G,i
ik50, J,i

i 50. ~1!

The entropy four-fluxSi obeys the second law constraint: th
positive entropy productionSi , i>0. From Eq.~1! one ob-
tains

UkG,i
ik50 ~2!

as the energy balance, and

hk jG,i
ik50 ~3!

as the momentum balance@4#. The signature convention i
~1112!. Ui is the particle frame four-velocity andhik

5gik1c22UiUk is the projection tensor, the operator whic
projects onto the 3-space orthogonal to an arbitrary time
vectorUi . If we are interested in dissipative effects in a he
conducting viscous fluid, we can define the energ
momentum tensor

Gik5c22~E0UiUk1qjUk1qkUi !1t ik1Phik, ~4!

whereP is the pressure,qi is the heat flux density,qi /c2 is
the related momentum density, andt ik is the total viscous
stress.E05n0m0c21n0e08 is the total density of the res
energy,n0 is the number density,e08 is the internal energy
per particle (e85e/n). The zero superscript pertains to th
rest frame. We use also the rest densities of massr0

5n0m0 and internal energyr0e05n0e08. Heat is understood
here as the energy flow relative to particle stream. The qu
tities qi andt ik satisfy

qiUi5Uit
ik50. ~5!

Equations~2!–~5! refer to Eckart’s@5# relativistic thermody-
namic theory where use is made of the particle frame. To
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observer at rest in this frame, the flux of the particles appe
to be zero and a heat flux is the flow of the energy relative
the particle stream. Another scheme, which we do not
here, is based on the energy frame~Landau and Lifschitz’s
frame @6,7#!. In that frame the flux of the energy appears
vanish to an observer and the heat flux appears as a dri
the particles.

In the framework of Eckart’s theory of heat flow@5#, ther-
mal inertia is possible only as a relativistic phenomen
However, Israel’s nonstationary theory@8–10#, which takes
into account the second order terms in the entropy four-fl
is sufficient to solve the paradox of infinite propagati
speeds of thermal signals. Israel’s theory involves
energy-momentum tensorGik as the quantity generalizing
mass in both a covariant form of the Gibbs equation an
generalized Gibbs-Duhem formula containing the fo
velocity @9#. It follows that the corrections to the classic
entropy and entropy flux must be of, at least, second orde
dissipative fluxes to make the theory compatible with st
dard thermodynamics in the quasistatic limit. However, t
theory, while general and yielding a more correct qualitat
description than the previous theories, offers only a rat
formal view of thermal inertia.

In Sec. V of this work another way is chosen to interp
and then investigate the effects of thermal inertia. It is ba
on our earlier recognition of the importance of the free e
tropy flow ~independent of the flow of the particles! in
Hamilton’s principle of nonrelativistic systems@11,12#. Us-
ing this principle we test a hypothesis that a part of the
servedrest mass of the fluid is of purely thermal origin, i
the sense that it is associated with the entropy rather t
with the particles. While this hypothesis does not change
background rest energyE5Mc2, we are able to show tha
the large kinetic terms of Grad’s theory and extended ir
versible thermodynamics~EIT, @13#! can be quite easily ob
tained. The resulting theory, which is certainly in the spirit
extended thermodynamics, is easily applied to Ray’s@2# con-
struction of the energy-momentum tensor in general rela
ity Gik, showing not only that the general formula~4! can be
derived in a direct way but also that definitions of heatq and
and stresst can be furnished inGik. These results are o
value, since the contemporary relativistic thermodynam
sets the structure of Eq.~4! only, on the basis of genera
covariance principles, but without any information regardi
the nature ofq andt terms in this equation.

III. TRANSFORMATION
OF THERMODYNAMIC INTENSITIES

IN A CLASSICAL CASE

The problem of relativistic transformation of thermod
namic intensities, such asT and m, will play a role in our
analysis, hence a brief introduction is appropriate. Exact r
tivistic transformations of thermodynamic parameters w
determined by Planck and Einstein@1# soon after the estab
lishment of relativity theory. In their work, the temperatu
T0 and the amount of heatQ0 in the proper frame moving
with the velocityv with respect to a laboratory are connect
with the quantitiesT and Q in the laboratory frame by the
noncovariant transformations

T5T0A~12v2/c2!, Q5Q0A~12v2/c2!, ~6!



tt’
n

ou

to
w
n-

ni

bu

m
a
tio
a

le
st
f
g

ed

ar
he

e
-

-
y
e
c

th
la
gy

in
ld

the

s
b-
ich
ti-

e-
r-

dre
lso
-

i-

in

rgy
y

-

the
ore

a
is
o-

of
e

PRE 58 7029THERMODYNAMIC AND RELATIVISTIC ASPECTS OF . . .
i.e., moving bodies appear cooler. However, in 1963 O
@14# work appeared implying that the true transformatio
have the form

T5T0/A~12v2/c2!, Q5Q0/A~12v2/c2!. ~7!

These quantities are time components of the related f
vectors. ~For example, the temperature four-vectorTi

5T0Ui /c.! This controversy divided the researchers in
three groups, each applying different transformation la
@Eqs. ~6!, ~7! or T5T0#. All researchers agree that the e
tropy is a relativistic invariant, so that the equalityS5S0

should hold in any case. The assumptionT5T0 follows from
the position that the temperature has a most natural mea
when assigned to its value in the proper frame@15,16#. We
have omitted here a comprehensive discussion of the a
dant literature referring the reader to several reviews@16–
19#. A summarizing remark is appropriate, however. So
authors conclude that equilibrium statistical mechanics c
not provide an unambiguous answer to the transforma
formulas of thermodynamic quantities and, therefore,
three kinds of transformations are acceptable@20#. In view of
our results here and some earlier ones@21,22# we accept the
classical formulas~6! as the most appropriate for reversib
processes in the energy representation, which is of intere
us. Staruszkiewicz’s@23# work solves exactly the problem o
the transformation ofT in the energy representation, leadin
towards acceptance of Eq.~6!.

In the framework of the variational formalism develop
here and in our previous work@11,12# the solution to the
problem is straightforward. Both kinds of temperatures
eligible to appear in the dynamical formulas, but only t
Planck-Einstein ‘‘cold’’ intensitiesT2 andm2 are the ingre-
dients of thethermodynamic transformation formalismthat
involves, in the nonequilibrium case, the velocities or flux
as additional variables. The temperatureT must be the nega
tive partial derivative of the kinetic potential densityL with
respect to the entropy densityrs at the constant transfer ve
locities, u and us , or the partial derivative of the energ
densityE with respect tors , at the constant momenta. W
shall show here that this requirement leads to the Plan
Einstein temperatures.

Let us compute the cold intensities corresponding to
classical equilibrium and nonequilibrium theories. The re
tivistic kinetic potential is the negative of the rest ener
density. The latter is usually written as the sumE0(rs

0,r0) of
the thermal~internal! energy densityr0e0 and the relativistic
rest energy densityr0c25n0m0c2. Working with the total
quantityE0(rs

0,r0) leads to a transparent picture. Express
rest densities in terms of the laboratory frame densities yie

L52E0~rsA12v2/c2, rA12v2/c2!. ~8!

The negative partial derivative ofL with respect tors at
constantv is

T52~]L/]rs!v5~]E0/]rs
0!~]rs

0/]rs!5T0A12v2/c2.
~9!

Similarly, for the chemical potential,
s
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m* 52~]L/]r!v5~]E0/]r0!~]r0/]r!

5m
*
0 A12v2/c25~m01c2!A12v2/c2. ~10!

The asterisk is used to indicate relativistic quantities. On
other hand, when the kinetic potentialL is expressed in terms
of fluxes~or—in the relativistic case—momentum densitie!
and pertinent differentiations are made, Ott’s result is o
tained. While the theory cannot answer the question of wh
T’s are closer to the indications of a thermometer, it iden
fies the Planck-EinsteinT’s as those measures of the fr
quency of thermal agitation which furnish the canonical fo
malism of thermomechanics based on the Legen
transformation and thermohydrodynamic potentials, and a
recognizes Ott’sT’s as different but specific differential mea
sures of the energy.

Equations~8!–~10! can be easily generalized to nonequ
librium situations. When the process is a~reversible! non-
equilibrium process, different transfer velocitiesus and u
must be introduced into the kinetic potentialL, Eq. ~8!. We
may note that the effect of the entropy velocity vanishes
the nonrelativistic approximation ofL,

L52E0~rsA12us
2/c2, rA12u2/c2!

> 1
2 ru22rc22re~rs ,r!. ~11!

The nonequilibrium intensities follow immediately as

T52~]L/]rs!r,us ,u5~]E0/]rs
0!~]rs

0/]rs!

5T0A12us
2/c2, ~12!

m* 52~]L/]r!rs ,us ,u5~]E0/]rs
0!~]rs

0/]r!

5m
*
0 A12u2/c2. ~13!

In this ~‘‘quasiclassical’’! case the entropy of the continuum
is exclusively associated with the internal part of the ene
E0. In other words, in the formula for the rest energ
E0(rs

0,r0)5r0c21r0e0, the only term containing the en
tropy is ther0e0 term. This causes identical temperaturesT
and T* , meaning that the temperature, as opposed to
chemical potential, has no relativistic component. Theref
any inertia acquired by the entropy can be linked only with
small internal energy term, and is practically negligible. Th
is seen explicitly below when the corresponding thermal m
mentum is computed.

IV. PARTIAL MOMENTA OF CLASSICAL
NONEQUILIBRIUM THERMODYNAMICS

The method developed earlier@12# allows us to compute
partial momenta for an arbitrary kinetic potentialL, so rela-
tivistic L’s can be applied as well. The final expressions
our equations will contain low-velocity approximations. Th
thermal momentum density]L/]us is

ps5~]L/]us!r,rs ,u52~]E0/]rs
0!~]rs

0/]us!

5c22T0rsus /A12us
2/c2>TJs /c2. ~14!
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This quantity vanishes in the nonrelativistic limit and, in th
sense, one can say that the entropy of classical therm
namics is inertialess or weightless. We stress that this is
the case of any extended thermodynamics, where the q
tity ps is much larger than that predicted by Eq.~14! and
does not vanish for an infinitec @24#. In Eq. ~14! the tem-
peratureT0 equals]E0/]rs

05]r0e0/]rs
0, the classical tem-

perature of the resting medium, and the relativistic mass t
present inE0 has no effect onT0. On the other hand, it is the
relativistic term that strongly influences the chemical pot
tial. Therefore the relativistic chemical potential must be d
tinguished from the nonrelativistic one. The rest fram
chemical potential of the relativistic theory is two comp
nent: m0

* 5]E0/]r05c21m0. Thanks to the very largec2

the momentum density of the matter predominates,

p5~]L/]u!r,rs ,us
52~]E0/]rs

0!~]rs
0/]u!

5c22~c21m0!ru/A12u2/c2>J1mJ/c2. ~15!

The sum ofp andps is the total momentum densityG @12#,

G5ps1p5c22T0rs
0S us

12us
2/c22

u

12u2/c2D
1~11c22h0!

r0u

12u2/c2

>c22Tj s1~11c22h!J. ~16!

When the heat fluxq5Tj s is introduced,

G>c22q1~11c22h!J. ~17!

Summing up, the simplest ‘‘quasiclassical’’ extension of t
standard theory of adiabatic fluid, which allows thermal d
grees of freedom, implies that the momentum density of h
is q/c2. In the nonrelativistic approximation the total mo
mentum density is the mass flowJ. Our distinguishing the
paths of the matter and the entropy leads to the predictio
the heat in the formq5Trs(us2u)5Tj s , and the resulting
momentum of this heat,q/c2, follows consistently. The ef-
fect of accompanying viscosity ist5qq/(Trsc

2), a new re-
sult.

It can also be shown that the relativistic ener
E5ps•us1p•u2L simplifies into the well-known equilib-
rium result whenu5us @2,7#. The energyE in the nonrela-
tivistic approximation (c→`) is the sum of the kinetic, in-
ternal, and rest energies in agreement with the stand
theory of equilibrium fluid@2#. The low-velocityL takes a
familiar form of the kinetic potential of perfect fluid,

L52r0c21r0e~r0,rs
0!

52~rA12u2/c2!@c21e~rsA12us
2/c2,rA12u2/c2!#

> 1
2 r~11h/c2!u22rc22re~rs ,r!

> 1
2 ru22rc22re~rs ,r!. ~18!

While all energy results are valid, and the improvement
comparison with the adiabatic fluid theory is significant,
would be hard to say that the last word in the theory of h
y-
ot
n-

m

-
-

-
at
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rd

n
t
t

flow has been said. In this regard the problem lies with
heat momentum itself: no thermal inertia can be predicted
a nonrelativistic limit. In other words, the improvement pr
vided by ‘‘quasiclassical’’ Lagrangians is insufficient to co
rectly describe thermal inertia. This situation calls for furth
research; we shall see that equations can be obtained, w
contains thec-free kinetic terms. They will appear in an ex
tended thermodynamics description when a part of the ba
ground energyr0c2 is the energy associated with the e
tropy.

V. A HYPOTHESIS OF THERMAL MASS
AND EXTENDED THERMODYNAMICS

The kinetic potentialL, whose Legendre transform isE,
depends on the assumption on how the observed inert
divided between the thermal and substantial degrees of f
dom, represented by the entropy and mass. Any class
thermodynamics is consistent with the assumption that
contribution of the entropy to the rest mass densityr0 is
zero; which means that the entropy or heat flows are iner
less in the nonrelativistic limit. This is an assumption whi
leads to the known paradoxes in the Fourier heat tran
theory and quantitative disagreement with implications of
kinetic theory.The hypothesis of a thermal massis based on
the assumption that part of the observed rest mass of a m
roscopic body is of purely thermal origin, meaning that
should be attributed to entropy rather than to particles@24#.
Assumption of a finiteu, which is the amount of the ‘‘ther-
mal mass’’ per unit of the entropy, leads to an extend
thermodynamics in which a part of the observed inertia
linked with the entropy flux. In view of differences in value
of u implied by various models@24# we assume here a con
stantu in the plateau regime of Grad’s model; thisu is well
approximated by the ratiom/3kB . The finiteness ofu elimi-
nates the paradox of infinite propagation speed and lead
kinetic terms in the nonequilibrium energy formula whic
are of the same order of magnitude as those found from
nonequilibrium statistical mechanics~Grad’s 1958 moment
analysis@25,26#!. In fact, Grad’s theory as well as exper
ments in heat conduction show that a reasonable ine
should be attributed to the entropy four-fluxSi5(rs ,Js) and
the heat fluxq5Tj s . The associated thermal momentumps
is then many orders of magnitude larger thanq/c2 of Eq.
~14!, yet theresultingmomentum in the resting fluid fram
(J50) is still q/c2.

Consequently, a LagrangianL is stated below which is
based on the split of the background relativistic energyr0c2

into the ‘‘bare matter’’ partrm
0 c2 and the ‘‘thermal part’’

rs
0uc2, such that the their sum remains equal tor0c2. SuchL

preserves, of course, the same observed rest densitr0

5rm
0 1urs

0 and the total rest energyr0c2 but admits that the
inertial responsibilities are shared by the mass and the
tropy in a balanced way. It is interesting@27# that any con-
stant choice ofu does not influence the value of the pressu
P derived fromL. Since the pressure is the extremum val
of a field Lagrangian@11,24#, the result proves that there i
no preference foru50 from the standpoint of action-base
criteria. Nonetheless, the magnitude ofu affects the tempera
ture definition and the limiting classical dynamics of the flu
system.
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The difference between the classical and extended
scription may be seen as a consequence of the choic
variables more appropriate than the classical. The traditio
kinetic potential L(r,rs ,u,us) is replaced by
L(rm ,rs ,um ,us), where the latter is obtained from the sam
rest energyE0 but expressed in terms of the densitiesrm and
rs rather than the traditional densities. In the rest frame
kinetic potentials in the old and new variables are equal,
L(r0,rs

0)5L(rm
0 ,rs

0). However, the L changes its form
when passing to the laboratory frame; whereas in the tr
tional variables (r, rs) the L takes the nearly traditiona
form ~18!, in the variables (rm , rs), it takes a different form

L52E0~rsA12us
2/c2,rmA12um

2 /c2!

52r0c21r0e~r0,rs
0!

52~urs
01rm

0 !@c21e~rs
0,rm

0 !#

52~ursA12us
2/c21rmA12um

2 /c2!

3@c21e~rsA12us
2/c2,rmA12um

2 /c2!#

> 1
2 ursus

21 1
2 rmum

2 2~urs1rm!c22~urs1rm!e~rs ,rm!.

~19!

Let us compare Eqs.~18! and ~19!, in which the last lines
describe the limiting nonrelativistic approximations. T
transformation of the internal energy is neglected in Eq.~18!
as it yields extremely small corrections toL and its deriva-
tives. The inertialess property of the ‘‘nonrelativistic’’ en
tropy was seen in the quasiclassical Eq.~18!. On the other
hand, the choice of a finiteu in Eq. ~19! changes the form o
the kinetic energy, or switches the responsibility of carryi
a part of the inertial effect from mass to entropy. Clearly,
limiting nonrelativistic kinetic potentials of Eqs.~18! and
~19! arenot equivalent. The nonrelativisticL in the new vari-
ables (rs ,rm) has the kinetic energy larger thanL evaluated
for the corresponding conventional variables (rs ,r).

Let us consider the differential of the relativistic intern
energy density in terms of the ‘‘canonical intensities
(rs ,rm). In the rest frame

dE05
]E0

]rs
0 drs

01
]E0

]rm
0 drm

0

[T
*
20drs

01m
*
20drm

0

5T
*
20drs

01m
*
20d~r02urs

0!

5~T
*
202um

*
20!drs

01m
*
20dr0. ~20!

In the first line of this equation ‘‘canonical intensities’’ ar
defined as quantities in which the minus superscript stre
their relation to the ‘‘cold’’ Planck-Einstein temperature
The asterisks stress the relativistic origin of both intensit
The third line describes transformation to the classical v
ables, the mass densityr and the entropy densityrs . Com-
parison of Eq.~20! with the classical Gibbs equation~oper-
ating with rs

0 andr0!

dE05T
*
0 drs

01m
*
0 dr05T0drs

01~m01c2!dr0 ~21!
e-
of
al

e
.,

i-

e

es

s.
i-

yields the desired connection between the relativistic int
sities

m
*
205m

*
0 ~5m01c2!, ~22!

T
*
205T01um

*
20 ~5T01um01uc2!. ~23!

The canonical intensities represent then the usual relativ
chemical potential and its thermal analog, which we call
thermal potential. ~Throughout our previous work@27,28#
the nonrelativistic intensitiesT20 and m20 were used with
the zero index neglected.! In terms of their relativistic coun-
terparts the nonrelativistic intensities are defined as

m20[m
*
202c2 ~5m0!, ~24!

T20[T
*
202uc2 ~5T01um0!. ~25!

Comparison of Eqs.~22! and~24! shows thatm205m0, i.e.,
the rest frame nonrelativistic canonical chemical poten
coincides with the classical one, whereasT20[T01um0,
i.e., the nonrelativistic thermal potential differs from th
classical T due to the contribution of the nonrelativisti
chemical potential. We stress thatEqs. (22)–(25) set the rest-
frame inputs T20 and m20 to their transformations into T2

andm2 of moving systems. In moving framesm andm2 are
not equal.@See Eqs.~30!, ~33!, and~34! below for transfor-
mations ofT2 and m2 in moving systems.# Note that the
classical densitiesr andrs cease to be the natural variable
of the energy densityE in the sense of Callen@29# whenever
the inertial effects are important.

However, not all thermodynamic properties change. T
replacement of the rest temperatureT0 by the rest thermal
potentialT20 leaves the densities of the internal energy a
the total mass unchanged; hence the specific internal en
is an invariant. Moreover, the replacement ofT0 by T20

does not change the pressureP,

P205T20rs
201m20rm

0 2re
20

5~T01um0!rs
01m0~r02urs

0!2re
0

5Trs
01m0r02re

05P0. ~26!

Of course, whenu50, T20, and T0 are identical. As the
simple calculation shows,

h205~T20rs
01m20rm

0 !/r05@~T01um0!rs
01m0rm

0 #/r0

5~T0rs
01m0r0!/r05h0, ~27!

the considered transformation does not change the spe
enthalpyh0.

The pressureP is a scalar in all the theories. The densi
of the internal energy in the laboratory frame,re5T2rs
1mrm2P, is an invariant accurately up to thec22 terms. If
kBuc2 equalsm0c2, then the coefficientu equalsm0/kB , and
the quantityT1uc2 is the sum of the usual statistical tem
peratureT and the~quantum, relativistic! de Broglie tem-
perature of a particle,Tr5m0c2/kB . In our theory the partial
derivative of the rest energy densityE0 with respect to the
rest entropy densityrs

0 equalsT0
* 5T0r1T0. In the de Bro-

glie theory @30# the statistical effects are ignored and t
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derivative in question equalsT0r ; in the classical thermody
namics this derivative is, of course,T0. The absence of the
usual statistical componentT0 in the de Broglie theory, iden
tifying T0r with an intrinsic temperature of a micro-objec
made difficulty which has prevented a wider disseminat
of his idea. Our relativistic approach incorporates the de B
glie microscopic thermodynamics and preserves the stan
statistical meaning of the usual temperature. The Plan
Einstein formula for the relativistic temperature transform
tion, Eq. ~6!, pertains in our theory to the sumT0

* 5T0r

1T0, in the de Broglie theory toT0r only, and in the clas-
sical relativistic theory toT0.

Our thermodynamics can now be applied to systems
motion. For this purpose we use the Lagrangian~19! with a
finite inertial coefficientu, the measure of the thermal ma
per unit of the entropy, and the canonical variables, the d
sities of entropy and bare mass,rs andrm . The nonequilib-
rium intensities of the moving system follow immediately

T
*
252~]L/]rs!r,us ,um

5~]E0/]rs
0!~]rs

0/]rs!

5T
*
20A12us

2/c25@uc21~]r0e0/]rs
0!#A12us

2/c2

5@uc21T20#A12us
2/c2, ~28!

and

m
*
252~]L/]rm!rs ,us ,um

5~]E0/]rm
0 !~]rm

0 /]rm!

5m20A12um
2 /c25@c21~]r0e0/]rm

0 !#A12um
2 /c2

5@c21m20#A12um
2 /c2, ~29!

where the asterisk refers to the relativistic quantities cont
ing the contribution of the rest mass. We stress that it is
relativistic canonical intensities, not their truncated nonre
tivistic counterparts, that obey the Planck-Einstein form
for the relativistic temperature transformation. Equatio
~28! and ~29! constitute the Einstein-Planck formulas f
relativistic canonical intensities when the thermal inertia
described by the inertial coefficientu. These intensities do
not coincide with the classical ones because theL is differ-
entiated with respect to the special densities,rs andrm . At
disequilibrium our intensities incorporate two different v
locities of the entropy and matter, contained in the trans
mations

T
*
25T

*
20~12us

2/c2!1/2, m
*
25m

*
20~12um

2 /c2!1/2.
~30!

Equation ~30! is a shorthand expression of Eqs.~28! and
~29!. The low-velocity transformation rule for the canonic
quantities is thec-independent transformation

T25T202uus
2/25T01um02uus

2/2, m25m202um
2 /2,
~31!

which applies forT20 andm20 obeying Eqs.~24! and~25!.
When u50, the velocityum approaches the hydrodynam
velocity u, T5T0, and only chemical potential transform
m5m02u2/2. This result is well known in the theory o
hydrodynamic fluctuations@31#.
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The pressureP preserves its scalar property even in
nonequilibrium situation

P25T2rs
21m2rm

21ps
2
•us

21pm
2
•um

22E2

5~T1um2uus
2/2!rs1~m2um

2 /2!rm1ursus
21rmum

2

2~re1ursus
2/21rmum

2 /2!

5Trs1umrs1mrm2re

5Trs1mr2re5P, ~32!

where Eq.~90! of our previous work@27# was used to linkE
with P.

IntensitiesT2 and m2 with tilde over their symbols in-
clude an effect of the external field; our previous work@12#
shows such effective quantities to be useful. For example
a Newtonian gravitational field, motions of the matter a
entropy with the velocitiesum andus induce the transforma
tions

T̃
*
2~us!5~T01um1uc1uc2!A12us

2/c2

>T01um02uus
2/21uc1uc2, ~33!

m̃
*
2~um!5~m01c1c2!A12um

2 /c2

>m02um
2 /21c1c2, ~34!

where their second lines generalize Eq.~31!. The transfor-
mations~33! and ~34! can be used to generalize the kine
potentialL, Eq. ~19!, to cases with scalar external fields. Th
generalizedL is the Legendre transform of the static pressu

2L~rs ,rm ,us ,um!

5
]P

]T̃
* 1
2

T̃
*
21

]P

]m̃
*
2

m̃
*
22P~ T̃

*
2 ,m̃

*
2 ,us ,um!

5rsT̃*
2~rs ,rm ,us ,um!1rmm̃

*
2~rs ,rm ,us ,um!

2P~rs ,rm ,us ,um!

>T0rs1~m01c1c2!~rm1urs!

2P2rmum
2 /22ursus

2/2

>re1r~c1c2!2rmum
2 /22ursus

2/2. ~35!

The transformation theory ofT2 and m2 is also useful
when the matter tensorGik is determined~Sec. IX! and a
transition is made to express its components in terms of
traditional quantities. An example in our earlier work@28#
shows that the components of the energy fluxQ, determined
for a multicomponent counterpart of nonrelativisticL, Eq.
~19!, can be brought to the traditional form which contai
all standard terms characterizing real fluids, with the h
flux, diffusion fluxes, and the work of the nonequilibrium
stress per unit time,P•u.
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VI. PARTIAL MOMENTA
OF EXTENDED THERMODYNAMICS

In classical thermodynamics both the entropy and the h
behave like weightless continua, whereas in the exten
approaches~Grad’s theory, extended irreversible thermod
namics, de Broglie thermodynamics, and the thermal m
theory analyzed here! they have an inertia. For any model o
a sufficiently small constantu and the standard linear mod
of heat conduction, the heat pulse propagates in our the
with thermal speeds not exceeding (T/u)1/2, in the classical
relativistic hydrodynamics with the speedc2, and in the clas-
sical nonrelativistic hydrodynamics with infinite speed.
clarification of this issue will be given in Sec. VIII; here w
aim to evaluate the momentum properties of the exten
model.

With the kinetic potential~19! the thermal momentum an
the momentum of the bare matter are

ps5~]L/]us!rm ,rs ,um
52~]E0/]rs

0!~]rs
0/]us!

5~u1c22T20!rsus /A12us
2/c2>uJs1T2Js /c2,

~36!

pm5~]L/]um!r,rs ,us
52~]E0/]rm

0 !~]rm
0 /]um!

5~11c22m20!rmum /A12um
2 /c2>Jm1m2Jm /c2.

~37!

The total momentum densityG or the sum ofpm andps can
be written as

G5ps1pm5~u1c22T20!rs
0S us

12us
2/c22

u

12u2/c2D
1~11c22m20!rs

0S um

12um
2 /c22

u

12u2/c2D
1~11c22h20!

r0u

12u2/c2 . ~38!

We introduce into Eq.~38! the heat fluxq5T0j s5rs (us
2u) and the diffusion flux of bare massjm5rm(um2u), a
sort of self-diffusion flux. The fluxes satisfy the standa
equality resulting from the definition of the hydrodynam
velocity

u j s1 jm50. ~39!

For small transfer velocities Eqs.~38! and~39! yield in terms
of the fluxes

G5ps1pm

>~u1c22T2!j s1~11c22m2!jm1~11c22h2!J

5c22~T22um2!j s1~11c22h2!J

>c22Tj s1~11c22h!J

5c22q1~11c22h!J. ~40!
at
ed
-
ss

ry
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Thus the extended low-velocity expression forG coincides
with that obtained from Eq.~17! in the previous case of the
inertialess entropy, i.e., the classical and the extended m
els correspond with the same density oftotal momentumG.
Yet, the extended model shows thatc22q is merely there-
sulting or net momentum of heat. Thec22q is residual, the
result of incomplete compensation ofps1pm in the frame
whereJ50; its definition rests on Eq.~39!, which assures
Eq. ~17! or ~40!. In the limit of an infinitec the compensation
of all internal momenta is complete.

On the other hand, Eq.~36! shows that for a finiteu the
partial momentum associated with the entropy transfer
be considerable. In the nonrelativistic rest frame (J50) this
momentum equals simplyuq/T, whereq is the heat flux. As
shown by the fourth line of Eq.~40!, the low-velocity heat
flux understood as the energy transferred in the fluid fra
(J50) equalsTj s , with T being the ordinary temperature
This holds becauseT22um2>T202um205T0>T, as the
effect of differenceuus

2/22uum
2 /2 is negligible, and the or-

dinary T transforms as a scalar at low velocities. Thus t
relativistic thermal momentum for the diffusive transfer
the entropy in the resting frame (J50) equalsps

05(c0
22

1c22)T2j s>(T2/T)q/c0
2, where c05(T2/u)1/2. The ex-

pression contains the ratioT2/T, the result of applying of
the old definitionq5Tj s to a new situation where the defi
nition q25T2j s would be not less relevant. With such
redefinition of heat the thermal momentum satisfies a m
monic formula

ps
05~cu

221c22!T2j s5~c0
221c22!q2. ~41!

As ps
0 nearly compensates the diffusional momentum of m

ter, the resulting relativistic effect is always as small asq/c2.
But this practical compensation does not exclude large c
petitive currents and the role of their momenta. In any ge
ine extended thermodynamics the entropy flux carries a fi
momentum in the nonrelativistic limit, as in Eq.~41!, and
this momentum cannot be ignored. Since the total mom
tum density G is constant, the large thermal momentu
causes the compensating self-diffusion momentum of m
to preserve a definite mass fluxJ.

The quantityps is the ~spatial component! density of the
following relativistic four-vector of thermal momentum:

Ps5~u1c22T20!Sus /A12us
2/c2,

Ps
45~u1c22T20!Sc2/A12us

2/c2, ~42!

whose absolute value uPsu5@(Ps
4)22Ps

2#1/2 is (u
1c22T20)Sc2>uSc2. Similarly for the momentum of the
bare mass the following relations hold:

Pm5~11c22m20!Mmum /A12um
2 /c2,

Ps
45~11c22m20!Mm /A12um

2 /c2, ~43!

and uPmu5(11c22m20)Mmc2>Mmc2. Thus the total four-
momentum of an equilibrium volume isuPu5(uS1Mm
1c22h20M )c25M (c21h0), whereM is the total rest mass
of the fluid andh20 is the modified specific enthalpy. Sinc
h205h0, the final result is the same as in the classical c
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when u50. Consequently, the classical resultuPu5M (c2

1h0) still holds as exact. The surplusMh0 to the rest energy
Mc2 is due to the thermal agitation of molecules. This co
forms to the standard theory which explains that the
thalpy, rather than the internal energy, plays the role of
time component of the energy-momentum vector when
system in motion is not a free system@19,23#.

VII. ENERGY AND ENTROPY RELATIONS

In accord with the definition of the barycentric velocit
we apply the relations

ru5rmum1ursus , ~44!

r5rm1urs , ~45!

to link the two representations in the laboratory frame. F
the extended model the density of the total energyE ~not E0!
is

E5ps•us1pm•um2L5c22~uc21T20!rsus
2/A12us

2/c2

1c22~c21m20!rmum
2 /A12um

2 /c2

1E0~rsA12us
2/c2,rmA12um

2 /c2!. ~46!

We transform this result to the rest densities, to compar
with the standard relativistic energy of a local-equilibriu
fluid @2,7#. We obtain

E5~c22T201u!rs
0us

2/~12us
2/c2!

1~c22m2011!rm
0 um

2 /~12um
2 /c2!

1urs
0c21rm

0 c21T20rs
01m20rm

0 2P, ~47!

where the second line represents the rest energyE0. A rear-
rangement yields

E5rs
0~T201uc2!/~12us

2/c2!1rm
0 ~m201c2!/~12um

2 /c2!

2P. ~48!

Equations~47! and ~48! describe the nonequilibrium energ
density of the extended fluid. At local equilibriumus5um
5u. In this case Eq.~48! simplifies to the well-known for-
mula for the relativistic energy of a local equilibrium fluid

E5~E01Pc22u2!/~12u2/c2! ~49!

@2,7#. In the low-velocity approximation, but still at disequ
librium,

E>urs
0c2/~12us

2/c2!

1rm
0 c2/~12um

2 /c2!1T2rs1m2rm2P

> 1
2 ursus

21 1
2 rmum

2 1~urs1rm!@~c21e~rs ,urs1rm!#,

~50!

where a transition can be made from variablesrs andrm to
express the energy as the function of the traditional varia
rs andr.
-
-
e
e

r

it
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Equation~48! generalizes the standard relativistic ener
~49! for a finiteu. Equation~50! shows that for the same tota
entropy and mass the extended energies are higher tha
corresponding energies of the local-equilibrium descript
@11–13#. Thus the nonequilibrium model increases the v
ues ofE above its equilibrium value. It is just this increase
the mechanical part ofE which causes the larger~in com-
parison to classical! momenta of extended thermodynamic

VIII. HEAT TRANSFER
WITH FINITE PROPAGATION SPEED

We can now easily explain the large thermal momenta
Grad’s theory@25#. We pursue the low-u case as sufficien
for practice in the frame of the present formalism. Using E
~44! and~45! in the form of the constraintu j s1 jm50 in the
last line of Eq.~50! yields

L5 1
2 ru21 1

2 u2~u21rs
211rm

21!j s
22rc22re

5 1
2 ru21 1

2 rm
21~rm1rsu!rsu~us2u!22rc22re.

~51!

Equation~51! may be transformed further, with convention
variablesrs , r, us , andu,

L5
1

2
ru21

1

2

rrsu

r2rsu
~us2u!22rc22re

5
1

2
ru21

1

2
rus~12us!vsm

2 2rc22re, ~52!

wherevsm5us2um is the relative velocity. This shows tha
as long asu is finite, the partial momenta,]L/]us , ]L/]vsm,
etc., appearing in various representations of extended
namics may be many orders of magnitude larger than
residual~standard, relativistic! momentum of heatq/c2. @The
latter is actually ignored inL of Eq. ~52! due to its approxi-
mate, low-u, form.# These partial momenta do not vanish
the limit of infinite c as does the momentumq/c2. Thus they
can fit the inertia of Grad’s solution of the Boltzmann equ
tion or the experimental data of thermal conductivities by
pertinent choice of the coefficientu @25,11,24#.

For example, in the variablesu andvsm, the momentum
density ]L/]vsm5rus(12us)vsm, and, since (12us)vsm

equals us2u5q/Trs , this density is q/cu
2, where cu

[(T/u)1/2. Hence, sinceu’s are roughlym/3kB @24#, cu is
close to the thermal speed. For Grad’s model the den
]L/]vs is a suitable quantity; it equalsrgs2vs5gsq/T
5q/cg

2, wherevs5us2u andcg5(T/gs)1/2, cf. Eq. ~53! in
Ref. @11#. This explains the origin of the momentum dens
ties like q/cu

2 in formulas for partial momenta and the
squares in the nonequilibrium internal energy. Note that
coefficientscu and cg need not describe the propagatio
speeds of heat~for the latter see below; they may be close
cu and cg!, although they still are convenient measures
inertial effects. Due to their speedlike nature, various inter
momenta can be presented in simple forms.

The diffusive entropy fluxj s5rs(us2u) is a basic vari-
able in our earlier work on nonrelativistic thermal inert
@11#; the correspondingL is given by Eq.~41! therein. How-
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ever, another inertial coefficient,g, is used there, derived
from Grad’s @25# model, which is a functiong(r,s) rather
than the constantu used here. Grad’s moment solution lea
to evaluation ofu in terms ofg as @24#

u~r,rs!5
rsrg

r21grs
2 5

gs

11gs2 . ~53!

For a constantg theu in Eq. ~53! depends solely on the rati
s5rs /r. This u does have a flat maximum with respect tos.
Thus Eq.~53! approximates well a constantu in the region of
rs and r surrounding the region of maximumu, where s
5s* 5(rs /r)* 5g21/25(5/2)1/2kB /m. In this sense the
present constant-u description is consistent with Grad’
model and the related thermal conductivity data. For an id

gas the corresponding maximum value ofu5( 1
2 )g1/2

5( 1
10 )1/2m/kB , i.e., u equals about (13 ) m/kB . This is the

maximal value of the inertial coefficientu obtained from
Grad’s model. In this respect, it should be stressed
Grad’s model and the related relaxation time approximat
produce data of thermal conductivity in quite good agr
ment with experiments. Thus our description usesg and u
actually confirmed by many experiments in heat conduct
~see also the end of the Appendix!. But, this being the case
the role ofu in Eqs. ~19!, ~48!, and ~50! is substantial. The
related thermal momenta understood in a broad sense as
tial derivatives ofL with respect to absolute or relative ve
locities, ]L/]us or ]L/]vsm, etc., can vary over orders o
magnitude, and are by no means readily negligible qua
ties.

In the entropy representation, the kinetic energy surp
manifests itself as a flux-dependent or ‘‘kinetic’’ entrop
The dissipated entropy in the rest frame is obtained under
usual assumption that the conservation laws for energy
momentum are the same for both the reversible process
for an irreversible process with the entropy sourcess . With
Eq. ~39! this entropy source can be expressed in terms of
ordinary temperature gradient and the entropy flux,

2Tss5 j s•S ]~uvs!

]t
1“T2D1 jm•S ]~vm!

]t
1“m2D

5 j s•S ]u~vs2vm!

]t
1“TD , ~54!

wherevs5us2u andvm5um2u are the relative velocities
Thus the gradient of the ordinary temperature persists as
driving force of heat transfer, and the inertial term appe
with u as the inertial coefficient. For practical purposes
differencevs2vm should be expressed in terms of the he
flux q5Tj s5Trs(us2u). From the definition ofu in terms
of the us and um the differenceus2u equals (us2um)(1
2us) where s5rs /r is the specific entropy. Henceq
5Trs(us2um)(12us) or, vs2vm5us2um5@Trs(1
2us)#21q and Eq.~54! implies the heat conduction in th
Cattaneo form

q52kH ]

]t S uq

Trs~12us! D1“TJ 52kH ]

]t S gq

Tr D1“TJ ,

~55!
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whereg is the state function in Eq.~53!. The last expression
in Eq. ~55! was introduced to make possible a comparis
between the present model, based on the coefficientu, and
the model of our earlier work@11#, derived from the constan
ideal gas coefficientg. The present model is an alternative
the g-based model; they overlap in the range of sta
independentu and g. Equation~55! defines the relaxation
time for heat flux,tq5kg/(rT), and the propagation spee
of the thermal wavec05(k/rcptq)1/25(T/cpg) /2. In terms
of u, in the plateau regime,

c05AT@cpg~u!#215ATscp
21u21~12us!. ~56!

For an ideal gas,g5( 2
5 )(m/kB)2 and cp55/2kB /m. With

these data Eq.~56! yields c05(kBT/m)1/2. A discussion of
the two models and of the variability ofu is available@24#.
These models are more exact than the traditional Fou
model~implying c0→`! in the sense that the infinite propa
gation speeds of the thermal disturbances are avoided.
they incorporate Fourier’s thermal conductivities.

IX. EXTENSION OF RAY’S ANALYSIS
BY INCLUDING EFFECT OF HEAT

We shall determine the matter tensor for a general re
tivistic fluid with thermal inertia. The Lagrangian density o
the special theory

L52E0~rsA12us
2/c2,rmA12um

2 /c2! ~198!

can be put in a manifestly invariant form by introducing t
four-velocity vectorsUs

i and Um
i and the corresponding

fluxes, each obeying the same formulas as the four-vecto
hydrodynamic velocity and the related mass flux

Ui[~Ua,U4!5S u

A12u2/c2
,2

c

A12u2/c2D ,

~57!
UiUi5U•U2U4U452c2,

where i 51, . . . ,4 anda51, . . . ,3, sothat any four-flux
vector can be written as

~J,J4!5~ru,rc!5S r0u

A12u2/c2
,

r0c

A12u2/c2D
5~r0Ua,r0U4!5~r0Ui !. ~58!

These equations allow for an immediate inclusion of therm
inertia to general relativistic fluids. Our approach nicely e
tends the elegant variational formalism, formulated by R
for perfect or adiabatic fluids@2#. Instead of searching for an
extremum of an actionA using the four variables~r,u! Ray
uses the five variables (r0,Ui) and the general relativistic
extension~59! of the constraint of Eq.~57! linking the four-
velocity components. The introduction of the metric tens
contained in Eq.~59! is a step towards general relativity
Using such an approach, Ray achieves a variational tr
ment of standard perfect fluids and gravitational fields
incorporating into the field LagrangianL constraints on mass
conservation, specific entropys, and fluid-particle identity.
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The perfect fluid description is in terms of the rest densityr0

and the hydrodynamic four-velocity of matterUi , obeying
JiJ

i52r0c2, or the four-velocity constraint

gikUkUk1c250, ~59!

which pertains to the case of gravitational fields with t
metric gik. The signature convention is~1112!. It is
equivalent to the transformation of any rest densityrK

0 of a
scalar quantityK from its rest frame to an arbitrary labora
tory frame which moves with the four-velocityUk.

Our extension of Ray’s field Lagrangian allows free e
tropy flow, free bare mass flow, and the finite thermal ine
u. Consequently, for a one-component fluid we have t
different four-velocities,Us

k and Um
k , which describe, re-

spectively, transport of the entropy and of the bare mat
The Ricci tensor is defined byRik5Rilk

1 . Inclusion of the
entropic degrees of freedom yields the Lagrangian dens

L5
c3

16Pk8
~2g!1/2R2c21~2g!1/2@~ups

01rm
0 !c2

1re
0~rs

0,rm
0 !#1~2g!1/2gs~gikUs

i Us
k1c2!

1~2g!1/2gm~gikUm
i Um

k 1c2!1~2g!1/2hs~rs
0Us

i ! ; i

1~2g!1/2fm~rm
0 Um

i ! ; i1~2g!1/2lsXs,iUs
i

1~2g!1/2lmXm,iUm
i , ~60!

where k8 is the gravitational constant, and the semicol
denotes covariant differentiation.R is the Riemannian curva
ture scalar which determines the Lagrangian of the grav
tional field; for our purposes its implicit form is sufficien
The presentL5c21L0 ~L0 is an original Lagrangian!, cor-
responding to the variablect5x4 used in the action integral

As the calculations are similar to those made for the or
nal model, we only briefly outline the derivation of the e
ergy tensorGik, stressing the new results caused by the f
entropy flow and referring the reader to Ray’s original pu
lications @2# for further details and generalizations for spi
ning fluids @32,33#.

The energy-momentum tensor is obtained in a direct w
by varying the action based on Eq.~60! with respect to the
components of the metric tensorgik . Variations with respect
to gik , rs

0, rm
0 , Us

i , Um
i , gs , gm , f, h, yield a set of equa-

tions of motion. When the extremum conditions with resp
to the densities

h ,iUs
i 52c21~uc21T20!, ~61!

f ,iUm
i 52c21~c21m20!, ~62!

and those with respect to the velocity components

gsgikUs
i 5rs

0h ,k2lsXs,k , ~63!

gsgikUm
i 5rm

0 f ,k2lmXm,k , ~64!

are combined with the velocity constraints forUs and Um ,
we obtain

gs5~2c3!21rs
0~uc21T20!, ~65!
-
a
o

r.

a-

i-

e
-

y

t

gm5~2c3!21rm
0 ~c21m20!. ~66!

Thus the multipliers of four-velocities are additive comp
nents of the relativistic enthalpy density of the fluid. W
recall that it is the total fluid enthalpy~not the total energy!
which is the component of the four-vector at local equili
rium @23#. With our multipliers, Einstein’s equations are co
tained in the extremum conditions of the action with resp
to the components of the metric tensor

]L

]gik
2S ]L

]gik,r
D

,r

1S ]L

]gik,r ,s
D

,sr

50. ~67!

For the Lagrangian~60! these equations are obtained in t
usual form

Eik5~8pk8/c4!Gik, ~68!

whereEik is Einstein’s tensor of the gravitational field. Th
energy-momentum tensor or the matter tensorGik is the
source of this field. In the present theory, the matter ten
Gik is affected by the heat flow, thermal inertia, and t
nonequilibrium stress. Here it is obtained in the form

Gik5c22rs
0~uc21T20!Us

i Us
k1c22rm

0 ~c21m20!Um
i Um

k

1gik@2~urs
01rm

0 !c22re
01rs

0~uc21T20!

1rm
0 ~c21m20!#, ~69!

where the conditions~65! and ~66! for the Lagrangian mul-
tipliers have been used. Since the expression in the last
is exactly the pressure scalarP, we find

Gik5c22rs
0~uc21T20!Us

i Us
k1c22rm

0 ~c21m20!Um
i Um

k

1gikP. ~70!

This equation takes into account effects of heat and none
librium stress~the total viscous stress in the case of a pur
dissipative fluid! through the relative four-velocities of th
entropy and bare matter with respect to the hydrodyna
four-velocity. It allows one to investigate the effect of th
dissipative phenomena on the solution of Einstein’s eq
tions. To prove this basic property it is essential that the r
mass~or relativistic energywithout the statistical term! fur-
nishes the definition of the hydrodynamic velocityUi ,

urs
0Us

i 1rm
0 Um

i 2r0Ui50. ~71!

This is equivalent to Eqs.~44! and ~45! which are the clas-
sical equations describing the additivity of laboratory-fram
densities and fluxes for any fixed point in the space-time

Now it is easy to prove that Eq.~70! can be cast into the
traditional form of Eq.~4!. An equivalent form of Eq.~4!
uses the projection tensorhik5gik1c22UiUk,

Gik5c22@~r0c21r0e0!UiUk1qiUk1qkUi #1t ik1Phik,
~72!

whereqi is the four-vector of heat expressed as

qi5rs
0~uc21T20!Us

i 1rm
0 ~c21m20!Um

i 2r0~c21h0!Ui ,
~73!
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and t ik is the four-tensor of nonequilibrium stresses e
pressed as

t ik5c22@rs
0~uc21T20!vs

i vs
k1rm

0 ~c21m20!vm
i vm

k #

>rs
0uvs

i vs
k1rm

0 vm
i vm

k . ~74!

Herevs
i 5Us

i 2Ui is the relative four-velocity. Note that th
heat flux is defined as the difference between the actual
ergy flux and the energy flux of a corresponding perf
fluid. Equation~72! is known@5,8# but expressions~73! and
~74! are new. Note that the relativistic heat flux in terms
the traditional temperatureT0 equals qi5T0rs

0(Us
i 2Ui)

5T0rs
0vs

i , as in our earlier nonrelativistic definition of he
understood as the effect of entropy flow in the fluid fram
@12#. Indeed,

qi5T20rs
0Us

i 1m20rm
0 Um

i 2h20r0Ui

5T20rs
0~Us

i 2Ui !1m20rm
0 ~Um

i 2Ui !

5~T202um20!rs
0~Us

i 2Ui !5T0rs
0~Us

i 2Ui !5T0 j s
i .

~75!

We stress that expressions~73! and~74! may be regarded a
macroscopic definitions of the heat flux and nonequilibriu
stress tensor. Such definitions should be distinguished f
phenomenological equations which link fluxes with cor
sponding thermodynamic forces. The phenomenolog
equations cannot be obtained from our reversible Lagra
ian, which works at the theoretical limit of a superconduct
Yet, unlike adiabatic fluid models, superconductor mod
preserve both heat and nonequilibrium stress, which is
substantial improvement. The phenomenological equat
of dissipative fluids can be found from Israel’s relativis
extension of Onsager’s formalism involving the entropy p
duction@8#. An example is our Eq.~54!, consistent with this
formalism.

For a special case whenUs
i 5Um

i 5Ui , the entries ofGik

simplify to the form

Gik5c22r0~c21h0!UiUk1gikP, ~76!

which describes an adiabatic relativistic fluid.
It is worth realizing that we havederived, not just as-

sumed, relativistic definitions of heat and nonequilibriu
stress, Eqs.~73! and~74!, from the extended Hamilton prin
ciple allowing thermal degrees of freedom, represented m
roscopically by the four-flux of the entropy. With these de
nitions, the energy-momentum tensor has the general form
Eq. ~72!. By furnishing these macroscopic definitions in t
context of thermal inertia, the variational principle adds
important ingredient to the classical formulas~4! and ~72!.

X. DISCUSSION AND FINAL REMARKS

This work has shown that flows of matter and inert
entropy have similar effect on the matter tensor, and that
split of the total mass into the thermal mass and bare m
does not change observable effects at thermal equilibri
Otherwise, nonequilibrium descriptions are benefited by
concept of the thermal mass, where both the heat flowq and
the nonequilibrium stresst emerge as effects of the entrop
-

n-
t

f

m
-
al
g-
.
s
e

ns

-

c-

of

n

l
e
ss
.

e

flow ~thermal mass flow! in the fluid frame.
The virtue of the approach based on the Lagrangian o

superconducting fluid is that it does not truncate terms in
matter tensor; in fact, the obtained energy flux contains b
the heat fluxq and the nonequilibrium flux of momentum,t.
~In the standard model of adiabatic fluid these terms are
sent.! Thus general conservation laws are produced, ap
cableevenfor dissipative fluids. Yet, as shown by the equ
tions of motion obtained from our Lagrangian, th
superconducting model does not admit any dissipa
mechanisms for fluxes. Indeed, the assumed zero ent
production admits that the fluxes can only be related
purely reversible effects, such as ‘‘ballistic’’ nondissipativ
heat transfer or purely elastic transport of momentum. T
reversibility is typical of all classical action-type approache
The problem of how to further modify Lagrangians in ord
to achieve equations of motion with dissipative terms a
still preserve the same conservation laws~matter tensor! is
unsolved to date. Nonetheless, some results obtained in
@12# show that additive interaction Lagrangians might bri
us closer to solving the problem. In the meantime, one m
content himself by improving the conservation laws and
matter tensor, both derived from extended reversible mod
such as our Eq.~60!. This is, in fact, the only improvemen
necessary to properly describe gravitational metrics in g
eral relativity, where the relativistic tensor of matterG is the
unique source of the gravitational field@cf. Einstein’s Eq.
~68!#. In other words, it is inessential whether the origins
the heat fluxq and of the nonequilibrium stresst in G are
reversible or not. This statement should remove a comm
misunderstanding concerning the role of dissipative effe
in the relativistic theory of gravitation. The effect of dissip
tion on gravitational fields is here shown to beindirect at
most: as apossiblephenomenon causing definite flows,q
andt, which could otherwise be attributed to some reversi
causes. This is similar to effects of electric currents wh
cause magnetic fields regardless of whether they are rev
ible ~caused by the motion of the conductor! or irreversible
~caused by the conductivity electrons!.

The search for complete equations of evolution~with both
reversible and irreversible terms! is recently quite intense
Grmela@34# has abandoned the idea of a single generaliz
L and proposed a powerful two-bracket approach, in wh
the reversible terms are represented by the Poisso
bracket, and the irreversible terms by the so-called ‘‘dissi
tive bracket.’’ An approach of this sort was applied in th
1994 book by Beris and Edwards@35# to many complex
thermodynamic systems~those with internal structure, rheo
logical fluids, liquid crystals, etc.!, where most of the results
were derived by using a Hamiltonian as a sole generator.
idea of the two-bracket description was further generaliz
by Grmela and O¨ ttinger to the so-called generic form@36#
which uses two generators, the energyE and the entropyS.
In the evolution equations, the functional derivatives ofE
and S are, respectively, multiplied by some antisymmet
and symmetric matrices~each satisfying a certain degenera
condition!. Again, the power of the method was shown
many applications@37#, including relativistic systems@3#. It
would seem from these results that reversible terms sho
be represented by an antisymmetric Poissonian bra
whereas reversible ones should be represented by a sym
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ric dissipative bracket. However, working in the context
the Onsager-like variational formulations, where a dissi
tive LagrangianLs applies, Sieniutycz@38,39# has shown the
~antisymmetric! Hamiltonian and Poisson-bracket structu
for purely dissipative thermal fields with heat transfer a
reaction-diffusion processes. The effect of the disequilibri
persisting in variational solutions@39# was exposed in a re
cent work@40# which treats lumped nonequilibrium system
which relax to equilibrium, subject to the conservation la
constraints; the obtained dynamics was again Hamilton
Moreover, an information-theoretic variational formulatio
has recently been found for the minimum ofrelative Kull-
back entropy, still again showing the Hamiltonian structu
of the irreversible evolution and leading to the Fokke
Planck equation@41#. All these results prove that the phys
cal effects regarded as thermodynamically ‘‘irreversibl
can certainly be described in terms of Hamiltonian or L
grangian formalisms and associated Poissonian brackets
the other hand, the results of the present paper show
fluxes usually regarded as ‘‘irreversible,’’ such as the h
flux q and the nonequilibrium stresst do naturally follow
from Hamilton’s stationary action, in which the entropy flo
is a varied extra variable. Thus the main difficulty in achie
ing a unifying Hamiltonian ~Poissonian! formulation is
caused by a composition of irreversible and reversible effe
rather than by each of these effects taken separately.

Certainly, more experimental data are needed to achie
quantitative conclusion on the role of thermal inertia in no
stationary fast-variable processes. Our theory should con
ute well to organize systematic experiments in this area.
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APPENDIX: EXPERIMENTS CONFIRMING
WAVE NATURE OF HEAT

Here we make reference to the literature which stres
experimental works confirming the wave nature of heat. L
f
-

n.

e
-

’
-
On
at
t

-

ts

a
-
b-

s-

es
-

ear dependence of stationary heat flux on the tempera
gradientDT rather than on its arbitrary power, (DT)n, is
well confirmed by experiments@42#. Thermal waves were
predicted in liquid2He by Peshkov@43#; the related experi-
ments are described by Pellam@44#. Thermal inertia can be
observed when the frequency of external oscillations is co
parable to the reciprocal of the thermal relaxation timet. In
terms of this relaxation time, the thermal conductivity
fluids is k5Trt/g, whereg is the inertial coefficient dis-
cussed in the text. For an ideal gas,g is equal to 2m2/5kB

2 in
agreement with the thermal conductivity data and the rel
ation approximation to the solution of Boltzmann’s equatio
Data are available showing that such approximation f
quently yields very good estimates of thermal conductivit
@45#. The numerical values of the coefficientu used in this
work are evaluated on the basis of the thermal conducti
data or from Grad’s solution@25#, as explained in Refs.@11,
24#. In other words, our choice of the coefficientu is consis-
tent with the experimental data of thermal conductivities
fluids, Sec. VIII.

As regards thermal inertia in other media, the reade
referred to pure dielectric crystals at lowT ~5 K!, where heat
pulses can propagate ‘‘ballistically’’ as longitudinal an
transverse excitations. The fully developed second-so
pulse, predicted theoretically by Krumhansl and co-work
in a number of papers, see, for example@46#, has been ob-
served in experiments with solid4He and solid3He @47#.
Helium crystals are highly anharmonic and hence nontypi
Therefore it is of interest that approach to the second-so
propagation and the short temperature pulses were dete
in ‘‘more normal’’ solids, such as very pure samples
alkali-halide crystals. For experimental and computatio
studies, see@48,49#. For solids~for which there is no gener
ally valid theory of thermal conductivity!, a time-dependen
relaxation model for the heat flux in metals was derived fro
the quantum mechanical form of the Boltzmann equati
The thermal and electrical relaxation times are not equal
though they are estimated to be at the same order of ma
tude, 10214 sec, for the common monovalent metals@50#.
For the relation of these evaluations to experiments,
Ref. @51#.
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